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Abstract. A covariant scheme is given for the second quantization of directly
interacting particles.

In a model, the space of interacting state vectors is explicitly constructed, at the
price of an invariant alteration of the original framework, which is necessary
owing to the presence of divergences.

1. INTRODUCTION

In the last decade considerable interest has been devoted to relativistic dynamics
of directly interacting particles [1].

This point of view, rather than being in conflict with field theory must be
understood as complementary.

Of course, the various formulations of relativistic particle dynamics are not
especially tailored for the description of local interactions. Most probably, these
new developments of particle dynamics provide a quite general framework in
which local interactions can take place, but as a very particular case. Reformulat-
ing in this framework the well-known realistic interactions (e.g. electromagnetic),
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which are of local nature, is therefore a widely open question that we should
keep in mind [2].

Nevertheless, our understanding of N-body relativistic dynamic has undergone
substantial progresses in the recent years.

If we consider the matter seriously,itis logical to go one step further, taking
into account creation and annihilation of particles.

This leads naturally to a relativistic second quantization which is not necessa-
rily a theory of fields, though it may eventually be exciting to make a contact
with conventional Q.F.T.

In this spirit, we have proposed a scheme [3] which is the logical continuation
of the so called a priori hamiltonian formalism of Predictive Mechanics.

Another method inspired by similar motivations has been independently
suggested by Coester and Polyzou [4].

Our approach can be summarized as follows:

The object of our study is not a field but a system of particles, the number of
them being unspecified and in general not constant.

Reference to the customary lagrangian canonical formalism is radically dropped
and replaced by a many-hamiltonian formalism directly inspired from N-body
covariant mechanics.

As a redult our description is basically off-shell and an infinite sequence of
hamiltonian generators is supposed to determine the dynamics. At the price of
a linear rearrangement, these operators form an infinite set of squared-mass
operators.

Since we consider stable particles, states of physical relevance are on the mass
shell. The mass-shell space is selected by diagonalization of the squared-mass
operators. (a generalized eigenvalue problem [5]). An evolution operator U can
be formed, which allows for an infinitely -many-time-dependent formalism
where the scattering problem should be posed.

This conceptual framework is simple, but mathematical difficulties are tremen-
dous, and we cannot be too ambitious from the start. Therefore

a) In contrast with the authors of Ref. {4] we shall not intend here to imple-
ment cluster separability.

b) We do not yet assume indiscernability.

As shown in Ref. [3], this picture can be displayed explicitly and with comple-
te mathematical rigor in the case of free particles, where it turns out to be equiva-
lent to the conventional treatment by Q.F.T. except naturally that the selection
of positive energy states is not automatically implied by the eigenvalue equations
unless suitable restriction is made, from the outset, about the big space in
which the whole description is imbedded.
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The first true problem is to modify the hamiltonian gerators of the free case
in order to obtain a non trivial model.

Especially, the conservation of the number of particles should be broken in
a way which respects Poincaré invariance.

This requirement strongly suggests that the basic ingredients for this modifi-
cation are annihilation/creation operators associated with a suitable invariant
(but off-shell!) one-particie state.

Indeed they change the number of particles and we control their transforma-
tion proporties under the Poincaré group (covariance).

Going further in this direction leads to define an off-shell free field operator
which is not to be used in any Lagrangian formalism, but should serve as a stone
in the construction of additional terms in our scheme [6].

But, in order to avoid unnecessary technical complications, in the present work
particles will be treated as distinguishable.

Thus, instead of considering creation/annihilation, or generalized free field
[7] operators, we shall deal with contraction and tensorial-product operators
[8], which are less popular but geometrically equivalent and, in the absence of
symetrization, more easy to manipulate.

With the help of these tools we aim at producing a model which must be non
trivial but as simple and tractable as possible. In other words, we look for a proto-
type which could throw light on the theory before we resume a more accurate
description.

Among a lot of various simplifications we neglect spin and consider only the
case of massive particles.

This paper is reorganized as follows:

Section 2 countains mathematical preliminaries and a survey of the conventions
we use.

Section 3 is devoted to the main lines of our second quantization scheme.

In section 4 a tentative model is sketched and its difficulties are analyzed.

Section 5 displays a general method which alterates the original formalism
and replaces the divergences by meaningful expressions.

In section 6 we indicate how to solve the mass-shell conditions which characte-
rize the space of physical states.

2. NOTATIONS, CONVENTIONS

Space-time signature is + — — —.
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Wetakec=h =1.

Greek labels o, §=0,1,2,3 are ommitted whenever possible, the scalar
product of four-vectors being denoted by adot, £ - x = an“, etc. No summation
over particle indices, unless explicitly specified. For each integer value of n we
introduce the indices

a,=1,2,...,n

Let 9, , be the differentiation operator a/ax;= d,, when it is necessary to
specify that it acts in the n-particle space. Ommitting the dummy Greek label
we write

0O =0 -0

n,a n.a,

,ay, n,a,’

n
For instance DZ,I is the dalembertian operator relative to the variable x, in the
space of two-boby wave functions.

L2(IR%) is the space of square integrable functions on space-time.

The integrals we write are understood from — oo to + oo,

The state vectors we consider are of the form

2.1 <D=(¢0,...,¢n(xl,x2... xn),...).

Various spaces are defined by imposing condizions on the y,. It might be
convenient to imbed them in a «big space» E which countains all the vectors
we need. We may define this big space by demanding that every ¢, is a tempered
distribution in all its arguments.

Thus, in contrast to more conventional habits, a state like ® in equ. (2.1)

is generally neither on the mass shell nor in the Hilbert space H = S LR,

However reference to H is precious as giving a reliable domain of validity for
some statements.

The scalar product in L2(IR%) is noted (p, ¥ and the same notation is extended
to the scalar product (®, ¥) in H without risk of confusion. This notation may
be used also when @ is a regular state and ¥ a generalized state in the sense of
rigged Hilbert space theory [5].

The particle number operator N and Poincaré transformations are defined in
E by the usual formulas

2.2) N®=(0,9,.-...09¢,...,)
(2.3) Ad):(ng,Agol,...,Agpn,...,)
and for instance

(2.4) P,®=(0,3,0, (0 +0,) 9, ...
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The no-particle state (1, 0, 0, . . .) is considered as the vacuum for free particles
(mathematical vacuum). It is Poincaré invariant and annihilated by P#, but not
the only one in F to share these properties.

Of fundamental importance are the contraction operator C[¢] and the tensorial
product operator T[yp]. We only shall consider the case where ¢ is the constant
function ¢(x)=1 and set C[1] = C, T[!] = T Definition formulas are the follow-
ing:

Let E™ be the n-particle space. C is first defined as a map: E® - E® D py

(2.5) Co, =fso,,(y,x1, o x, pdty

Then C is extended to E (Using the same notation without risk of confusion)
(2.6) CP=(Cy¢,.Copy....,Cop, 1)
T is first a map E® —» E#+ D
(2.7) T, =¢,(Xp Xy...%,, )
(2.8) Tyy= vy, as a constant function of x.
Then T is extended to F
2.9) Td>:(0,T¢0,T¢1...Twn_l...).

While T is always defined, the domain of C must be characterized by the require-
ment that the integral (2.5) converges in some well-defined sense, which amounts
to restrict the n-particle space by a condition g, €™ =7 °" where J is a

sujtable space in which J¢(x)d*x always converges. In view of our purpose,

and for the sake of simplicity, let us assume that 7 is the space of functions
which are globally integrable from —oo to + oo, in a large enough sense [9].
Note also that for £ # O the plane waves are in 7, according to

(2.10) fe“z"‘d“x = (.

In contrast, the constant function ¢(x) =1 is not in .7, and therefore T, as defin-
ed in (2.7) always leads out of 7+ D,

Call %9‘ ) (symbolically) the subspace of E resulting from the assignment

that ¢ €7 ™. We see that T, defined as in (2.9) always leads out of T
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For simplicity again, we shall not display the separation of positive and negati-
ve energies. Still, let us point out that it would be possible to restrict £ by deman-
ding that the Fourier transformed of each ¢, has support limited by the future
light cone, with respect to each one of its arguments. This defining E*.

Using C[1] and T[1] as we do would be compatible with such a procedure,
as the Fourier transformed of ¢(x)=1 is concentrated on the vertex, which
belongs to both parts of the light cone.

3. SECOND QUANTIZATION
A. Free Particles

The infinitely -many-hamiltonian formulation applies trivially to free particles.
In this case, the conventional description requires that the state vector satisfies
the condition

(3.1 (O, +mH) Y, (x.....x,)=0

foran: 1,2,...,n.

By a slight abuse of language all the states which fulfill (3.1) are usually said
to be on the mass shell, though their component d/o is not in gencral solution
of an equation like (3.1). In particular the vacuum does not correspond to a fixed
value of m.

We shall respect the traditional denomination, but it is useful to introduce the
concept of exclusive mass shell characterized by the additional assumption of
no component on the vacuum, that is

(3.2) Vy=0.

Now the mass shell space K, is the direct sum of the exclusive mass-shell space
K ¥ with the one-dimensional no-particle space.
Let us introduce the hamiltonian generators by the formula

1
'5‘ Danwn, 0.. )

n.a,

(3.3) h <1>:(O,...,0,—
and the squared-mass operators by

1 1
3.49) Malaz"'q):(o’—;Dal‘pl”"’—gDan‘p""")
which means the linear rearrangement

(3.5) M "':h1+h2,a2+"'h +... .

ay 42
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It is clear that the genralized eigengalue equations

1
(3.6) M V= —m?Y

a1a2a3 2
are equivalent with ¥ € K°*. Reconstruction of the total space K, is achieved
by dirict sum with the vacuum space (with is a null eigenspace of the M-operators.
Thus, for m # 0 the bare vacuum space is actually orthogonal to K;l"). Note
that the need to distinguish the /i from the M is a genuine feature of the second
quantization in its most general many-time formalism. This technical detail
corresponds to the postulate [10] that the evolution operator has the form

(3.7 U= UI(U2’1U2)2)(U3’1 U3’2U3’ Y I
with
(3.8) Un!an =expi Tn,anhn,an'

(No summation).

All the h-operators commute among themselves and there is no problem of
mathematical rigor in (3.5) or (3.7). The constants of the motion being the
operators which commute with the hamiltonian generators, the conservation of
linear or angular momentum is derived without invoking the lagrangian canonical
formalism.

B. Interacting Particles

We postulate that interacting particles are described by suitable hamiltonian
generators which are no longer given by (3.3). We retain the rearrangement
formula (3.5) but (3.3) and (3.4) are modified in order to take the interaction
into account.

The new operators hn’an must keep along with the following requirements

a) Commutation among temselves

[h R 1=0.

n,a,’ p.ay
b) They remain functionally independent.
¢) Commutation with the generators of Poincaré algebra.
d) Hermiticity.
The evolution operator remains formally defined by (3.7).
Note that (a) legitimates a lot of formal calculations dealing with U in scatter-

ing theory. Moreover (a) is the logical generalization of the predictivity conditions
we know in N-boby dynamics [11].
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The interacting exclusive mass shell is characterized by eq. (3.6) where now
Malaz--- are the modified squared-mass operators. It is worthwile noticing that
(a) and (3.5) imply that the M operators are constants of the motion, and the
equations (3.6) form a compatible system.

After selection of the exclusive mass-shell space it will be relevant to consider
eventually the extension of it by a suitable physical vacuum which might be
distinct from the bare no-partical state [12].

This point will be discussed later, in the context of more specific assumptions.

The problem is to satisfy the requirements a) b) c) d) in a nontrivial way. The
less we can demand is that

D [hn 2 , N] not all vanish in order to ensure that N is no longer a constant
i
of the motion.

II) The new hamiltonian generators do not all commute with the free ones,
in order to have

[0, U,

ree

1+0.

Otherwize the scattering properties are trivial.

Haag’s theorem [13] is not ¢ priori an objection, since our approach is not
founded on the canonical lagrangian formalism and the usual hamiltonian density
is not employed. However, the consistency of (I - II) with (c) requires special
care and is postponed to the next section.

Let us indicate a straightforward method for constructing operators which
satisfy all the above requirements except perhaps (c). From now on, quantities
labelled with a bar refer to the free particle system. For example U = Ug.o ete..

Let B be an invertible operator which satisfies

a [B,N]#0
ar) [B,7%1] not all vanish, thus [B, U] # 0.
It is clear that setting

(3.9) h  =Bh, , B!

n,a, ,a,

automatically we fulfill (a) (b).
The squared mass operators are given by

(3.10) M :BMalaT,. B!

a2y
and we have also U = BUB~ ! and eq. (3.5) (3.7) (3.8) hold without mathematical

difficulties.
The exclusive mass shell K* is in one-to-one correspondance with K¢*, and
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its elements given by
(3.11) ®=B®

which solves (3.6) if ® € K¢*.
The complete mass shell space is obtained by addition of the physical vacuum
@, which we assume to be of the form

(3.12) =B,

where 50 is the no-free-particle state (1,0,...). Note that ®, necessarily a
zero-mass state.

Thus finally (3.11) defines all the interacting states, if ® is an arbitrary free-
-particle state on the mass shell (vacuum included). When, moreover, B is unitary,
then (d) also is satisfied and U is unitary like U.

Such a model is still spectrally trivial in this sense that the eigenstates of M
are in one-to-one correspondance with those of M.

Nevertheless the particle number is not constant and the scattering problem
is far from trivial, because [U, U] does not vanish.

The crucial question is whether B can be chosen in such a way that condition
(c) also is satisfied. It would be sufficient that B commutes with the generators
of the Poincaré algebra. If so, we could derive the conservation of linear and
angular momenta, and <1>0 would be an invariant no-momentum state.

4. THE NAIVE MODEL

In order to have B unitary it is natural to choose
4.1 B=expikA

where k is a coupling constant and 4 hermitian.

One is left with the problem of finding 4 which does not commute with
N and such that [4, 7{"’“"] not all vanish.

From a general view point it is natural to attempt the construction of A from
an invgrignt combination (including derivatives and integrations) of covariant
generalized free fields which act off shell [6] [7].

Still we way fear that no such invariant A exists at all. It seems that a simple
solution is

(4.2) A=C+T

with C and T defined in egs. (2.6) ana (2.9)respectively. Indeed C and T commu-
te with Poincaré transformations and break the conservation of N (For instance
computing (C + T) 50 we obtain a one-particle state). That A does not commute
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with all the % is easy to check. Compute for instance the action of [C + T,ﬁ3,2]
on a 2-body state (0, 0, spz(xlxz), 0 ...). The only non vanishing contribution
comes from 113! 5 T.

Recalling that C = C[1) and T = T[1] one expects that C = T " and therefore
A is hermitian [14]. The truth is a little bit more subtle, all we can prove being

(4.3) (P, CV¥)=(TP,V¥)

where W is restricted by the condition that Y, are test functions (in Schwartz
space). In fact T® cannot be normalized (for ® # 0) and (4.3) makes sense in a
rigged Hilbert space.

The most naive treatment would ignore mathematical difficulties in a first
order perturbation expansion according to the formulas

4.4 B=1+ikA4

(4.5) P=D+ikAD
and, omitting various particle indices
(4.6) h=h+ik][A,h)
(4.7 M=M+ik[4, M].

Explicit computation of (4.5) is very easy when @ is an n-body plane wave.
For instance when n = | one finds

(4.8) d = (0, ke’ 0...).
The vacuum of interacting particles is at first order
4.9) ¢,=(1,ik,0,...).

Unfortunately any effort to go beyond the first order is plagued by divergen-
ces. The origin of this trouble is that the constant function ¢(x) =1 is not in
L?(IR*) which implies that T[1] is not an operator in H.

Actually T always leads out of the domain where C is defined, hence the
product CT diverges like the volume of space-time.

Finally A2 and the higher powers of A diverge. [t is clear that this drawback is the
price paid for the use of the constant function which guarantees Poincaré invariance.
Of course C and T can be regularized if we accept to replace ¢(x) = 1 by asquare inte-
grable function which is constant in a finite region only. This well-known procedure
would break Poincaré invariance by the introduction of a box in space-time [15].

We prefer an alternative method which preserves invariance but requires an
extension of the formalism.
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5. ALTERATION OF THE FORMALISM

We are going to redefine divergent quantities as elements of a commutative
algebra A of c-numbers in which complex numbers can be imbedded. At the
same time, the space of state vectors will be enlarged as to become a module
on A (i.e. linear combinations by elements of A will be permitted) which im-
plies, of course, that it remains a vector space on the field of complex numbers,
C.

The underlaying idea is that we should replace the initial Hilbert space by a
similar construction of a bigger vector space endowed with a hermitian form
which takes its values in A. Indeed such a structure would present almost no
formal difference from the traditional one, with the advantage of a tremendous
mathematical flexibility.

However we shall not give here a systematic development of this point of view
which deserves a separate study [16].

Rather, we are going to introduce as simply as possible the required modifica-
tions. Not departing from the Fock formalism, we still postulate that the state
vectors are

.1) ® = (P Py By )

but the nature of the various yp, is altered by assuming additional dependence
on an extra variable £. This real and scalar variable is by no means a new degree
of freedom. On the contrary it must be understood as mere mathematical para-
meter, the role of which is to insure consistent calculations.

The generic term of the sequence ® is thus of the form

Pulxys oo X, 6)-

Let us be more specific by requiring that the dependence on £ is holomorphic.
As the holomorphic functions in § (with complex coefficients) form (algebrically
speaking) a field [A, we can consider ¢, not only as a map: R*" x IR - € but also
as a map: R*" - A, that is an A-valued function of > S With this later
point of view, the n-body wave function ¢, still can be considered as an element
of the n'" tensorial power of the one-particle space. Naturally, linear combina-
tions involve coefficients which are arbitrary holomorphic functions in £.

We suggest to call alteration the above procedure which consists in the intro-
duction of the ¢ dependence.

If F is a certain space of functions, we shall note F¥ the space obtained by
adding the holomorphic dependence on £.

From now on dependence on ¢ will be implicitly understood as holomorphic.

In order to define precisely the new space of states, let us begin with the
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one-particle space.
If L is the space made of functions of the form

(5.2) e=f(x)+A

with A = const. and [7 f d*x converges [9], we call L* the space of the functions

(5.3) P(x, £) = f(x, ) + N (E)

where [ f(x, £) d*x converges, and A depend on £.

On L we may define with obvious notations an [A-valued sesquilinear map
(5.9) (w,w)sz*gd4x+uff*d4x+h*fgd4x+>\*u.§.

(Note that (5.4) can also be considered as defining on L an infinite sequence of
matrices parametrized by £. This point of view will be invoked in our conclusion).
In the spirit of a recent work [16] this formula can be extended to L¥ which
becomes an /A-vector space with hermitian form.

Let L*®" be the n'" tensorial power of L* considered as a space of A -valued
functions in the variable x. For instance L* ® L¥ is made of functions of the
form

(5.5) 0y = F(x). Xy, £) + g(xy, ) + B 0xy, §) + u(®)

where f is integrable from — oo to + oo with respect to both x, and x,,g and A
are integrable with respect to respectively x and x,,.

Naturally we make the convention that the L¥®0 = A

Taking L#®" as n-particle space, we construct the new space of states, say I'*.

As anounced previously, I'* is a vector space on €, and also on AA. It is equip-
ped with a (A-valued) hermitian form, thus hermiticity and unitarity have a
precise meaning when speaking of operators in I'*.

Extension of the Poincaré group to altered states.

d=(.., wn(xl, Xy X,, £),...) is straightforward: the usual formulas
apply, the scalar variable ¢ being ignorable. The same remark holds for the particle
number operator and the free hamiltonian generators.

Now we come to the main point of this section:

C can be replaced by a new operator C* which is defined by similar formulas
but is well-defined in T'%.
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In this spirit, C¥ will be first defined as a map:
L#en_, L#@(n»l)

and then extended to I'*. Let us start with the one particle space, and ¢ as in
(5.3). We define

(5.6) C#so=ff(x, £) d*x + EX(E).

To each ¢ in L¥ we associate by C* an element of A. When A =0 we recover
the definition of €. Note that if f and A are independent of £ then ¢ isin L, but
C#* does not map L into C. Therefore the introduction of altered states (i.e.
states depending on §) cannot be avoided. Note that an illegal application of C
to a non-trivial element of L (i.c. A = const. # 0) would have produced a formula
like eq. (5 - 6) with a singularity in place of £ in the second term.

If A is a space-time displacement, it is obvious that

(5.7 C*o(Ax,£)=C*o.
We extended C* to any n-particle state by
(5.8) CHY ... 0,) = CH Y (¥, 8. . y,).

For example we have explicitly in L* ® L¥ the formula

(5.9) C*yp, =jf(y,x1, £)dty +fg(y, £ d*y + Eh(x,, &) + En(®).

Obviously C*¢, belongs to L¥. Finally C* is everywhere defined in I'¥ by the
formula

(5.10) C*® = (C*p,, C*op,...CPp  ,...).

Of course C* ® coincides with C® in the particular case where ¢ € H.

Remark. C*® does not map into itself the space I' defined by requiring that
¢n€L®". The intervention of altered states is therefore essential. From (5.7)
(5.8) (5.10) we see that C* commutes with the transformations of the Poincaré
group.

Unlike C, the tensorial product operator T can be extended to I'* without
modification.
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Indeed the formulas can be used also when the functions ¢, additionally
depend on £.

Note that C* and T are conjugate with respect to the hermitian form of I'¥.

Finally we can replace C + T by the linear operator

(5.1D A=C*+T

which is everywhere defined in T'#. The various powers of A are well-defined,
andsois C*T.

Since the action of 4 coincides with that of C + T is some particular cases,
checks made with C + T are sufficient to insure [4,N] = 0 and [4, I_zn’an] not all
vanish.

Therefore non-trivial interacting hamiltonians h, , are defined by eq. (3.9)
’*n
when

(5.12) B =expik A

k being a coupling constant. For the moment eq. (5.12) defines B and B~ ! as
formal series in k, at least. In contrast with the situation which would have
resulted from eq. (4.2), each term of the series is now well-defined.

We guess that a more elaborated theory of linear operators in I'* would
improve our definition of B.

Similarly, the squared mass operators are defined by (3.10).

Note that in (5.11) A satisfies all the desired requirements.

The invertibility of B is sufficient to insure a one-to-one correspondance
between the free mass shell and the interacting mass shell, for each value of the
mass. Hence M has a continuous spectrum of generalized eigenvalues which
are not only real, but positive.

6. STATES ON THE MASS SHELL

The model is now defined by equations (3.9) - (3.12) where B is the series
(5.11). Computation of (3.11) can be carried out at any order in the coupling
constant.

As it involves repeated applications of C¥ and 7, the result can be written
explicitly up to a certain number of integrations over space-time, for an arbitra-
ry ® on the free mass shell.

The following remark is important: We have enlarged the initial formalism
as to incorporate systematically altered states. In particular the space K of the
states which are on the free mass shell has been enlarged too.
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For example the one-particle state
0,5¢"*,0..)

with 12=m?2, is an altered solution of (3.6). Iis physical interpretation is not
obvious in spite of the possiblility that it represents an ultraidealized situation.

If any collision theory is possible at all, the question arises wether it may
happen that _ be £-dependent when @, is not.

In the absence of any argument for discarding this possibility we face the
problem of interpreting also altered states.

In other words, numerical information (in the conventional sense) should
be extracted from altered amplitudes.

In the present formalism, the quantities usually required to have a direct
physical meaning (expectation values, transition probabilities, etc.) may be
£dependent (except if a fortunate cancellation mechanism occurs, which is
by no means certain).

The limit of these quantities for § - + o will be considered as the relevant
numerical answer, in agreement with the heuristic intuition that ¢ replaces a
divergence.

Let us point out that the calculation of ® can be explicitly carried out when
®is an n-body plane wave. Indeed, recalling C¥1 =§¢ (C* as a map L > A)
and formula (2.10), we see that repeated applications of C*¥ and T give a result
in closed form (at any order in k).

Computation of the physical vacuum is elementary, with the help of the
useful formula

(6.1) C*T"O = (T 13,
One finds for instance

(6.2) AD =T3P,

(6.3) ArD =D+ T2,
Thus, at the second order

k2
— . _ ’x
By +ikT 3~ — T8,

k2
(6.4) @, = (1 ——
2

where 7" ® is the n-body state (..., 0,1,0,...).

It was obvious from the very beginning that physical states are generally
not normalizable in the sense of the inner product (®, W) in H, which is a mathe-
matical structure without direct physical interpretation [17].

Nevertheless, the free-mass-shell space X is equipped with a hilbertian structure
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of its own { @, ¥}, (the physical scalar product resulting from properties of the
solutions of the Klein-Gordon equation).

Now the physical space which results from taking & unaltered in eq. (3.11)
can be given a similar structure, just by imposing the definition

{®, ¥} ={B, T}

More generally if we wish to incorporate altered states we shall considere an
[A -vector space with a hermitian form {®, ¥}.

7. CONCLUSION AND OUTLOOK

We have succeded in the perturbative construction of the state vectors which
represent interacting particles. Expressions in closed from will be availabe if the
operator B = expi k (C¥ + T) is given a meaning other than perturbative, which
leads to investigate the topology of spaces endowed with a hermitian form
without being Hilbert spaces.

In view of a simple and comprehensive presentation we have reserved this
question for subsequent papers.

Another simplification was taking L as one-particle space, instead of the space
of tempered distributions. (L is somehow the minimal space we can afford). But
a more general assumption would have drastically complicated the procedure of
alteration.

Furthermore we have assumed that the particles are distinguishable and scalar.
These properties do not seem to be essential and could be relaxed.

At least one can seek for a model invariant under particle permutations.
Besides, future work will pay more attention to the separation of positive energy
states.

We do not claim that the alteration procedure developed here is a renormaliza-
tion method in the full sense.

Indeed we have been substantially helped by the fact that the only divergences
in the tentative model of section 4. all arise from the infinite volume of space-
-time. This is more comfortable than the generic situation one usually meets in
realistic Q.F.T.

But some analogy exists with the so-called (<I>”')2 theory, which has no ultra
violet divergences.

Our altered formalism can be compared with the method utilized therein:
Instead of a cut-off labelled by a discrete parameter, we have in fact introduced
a (continuous) infinite sequence of metrics, parametrized by £, and also a sequen-
ce of systems with an interaction which is Poincaré invariant for each value
of &.
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In our scheme P0 is relieved from the task of generating the dynamics (this
role being assigned to the %), which brings out a great flexibility. A question
remains: Is it possible to find an invariant model satisfying conditions (a) (b) (c)
(d) {1, II) of Section 3 without alteration, but not necessarily in the special
form of (3.9) (3.10)?

We have a serious doubut and the most constructive attitude, in the state of
our knowledge, is to improve the method of alteration, in view of further
constructions.

There remains a lot of work to carry out. Indeed, constructing the space of
states is only the first step in the quantization of a system.

The second step (and not the least) is the study of scattering properties. All
we have done so far is to pose this problem. The complication involved by the
use of an infinitely-many-time formalism may seem hopeless. But it may be
noticed that our evolution operator, which depends on a countable infinity of
proper-times is less complicated than the one of the Tomonaga-Schwinger forma-
lism, which is labelled by a spacelike surface.

Here, like in the case of Q.F.T., one knows that the tremendous redundance
of the formalism (price paid for a top level of generality) can hide a simpler and
more intuitive one-parameter picture which is less beautiful but more efficient
in practice.

Another way to look at this question can be the search for models in which
the number of particles is variable but cannot exceed a fixed bound [4]. For
such truncated interactions the many-time formalism will be tractable, and
S-matrix calculations possible.

Anyway, promising results obtained in the 2-body [18] and n-body [19]
sectors show that a reasonable scattering theory may be founded on a picture
which involves many evolution parameters.

Returning to the model presented here, let us stress that if .S exists, it has
obviously no reason to be the identity.

It will be exciting to make some contact with usual Q.F.T. The difficulty
stems from this peculiarity of field theory that its operator formulation is a
priori restricted to the free-mass-shell space.

Before attacking this problem, it will be useful to construct and study simpli-
fied example of this situation.
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