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Abstract. A covariant schemeis given for the secondquantization of dfrectly
interactingparticles.
In a model, the spaceof interacting state vectorsis explicitly constructed,at the
price of an invariant alteration of the original framework, which is necessary
owingto thepresenceofdivergences.

1. INTRODUCTION

In the last decadeconsiderableinteresthasbeendevotedto relativisticdynamics

of directly interactingparticles[1].

This point of view, rather than being in conflict with field theory must be

understoodas complementary.

Of course, the various formulations of relativistic particledynamicsare not

especially tailored for the descriptionof local interactions.Most probably,these

new developmentsof particle dynamics provide a quite general framework in

which local interactionscan takeplace,but as avery particularcase.Reformulat-

ing in this framework thewell-known realisticinteractions(e.g.electromagnetic),

Key- Words:RelativisticAction-At-A -Distance.
1980MathematicsSubjectClassification:81 E 99, 81 G 25, 81 M 05.



102 P. DROZ-VINCENT

which are of local nature, is thereforea widely open question that we should

keepin mind [2].

Nevertheless,our understandingof N-body relativistic dynamichasundergone

substantialprogressesin the recentyears.

If we consider the matter seriously,it is logical to go one step further, taking

into accountcreationandannihilationof particles.

This leadsnaturally to a relativistic secondquantizationwhich is not necessa-

rily a theory of fields, though it may eventually be exciting to make a contact

with conventionalQ.F.T.

In this spirit, we haveproposeda scheme[3] which is thelogical continuation

of the so calleda priori hamiltonianformalism of PredictiveMechanics.

Another method inspired by similar motivations has been independently

suggestedby CoesterandPolyzou[4].

Ourapproachcanbe summarizedas follows:

The object of our study is not a field but a systemof particles,the numberof

thembeingunspecifiedandin generalnot constant.

Referenceto thecustomarylagrangiancanonicalformalism is radically dropped

and replacedby a many-hamiltonianformalism directly inspired from N-body

covariantmechanics.

As a redult our description is basically off-shell and an infinite sequenceof

hamiltonian generators is supposedto determinethe dynamics.At the price of

a linear rearrangement,these operators form an infinite set of squared-mass

operators.
Sincewe considerstableparticles,statesof physicalrelevanceareon themass

shell. The mass-shell spaceis selectedby diagonalizationof the squared-mass

operators.(a generalizedeigenvalueproblem [5]). An evolution operatorU can

be formed, which allows for an infinitely-many-time-dependent formalism

where thescatteringproblemshould be posed.

This conceptualframework is simple, but mathematicaldifficulties aretremen-

dous,andwe cannotbe too ambitiousfrom thestart.Therefore

a) In contrastwith the authorsof Ref. [4] we shall not intend hereto imple-

ment clusterseparability.

b) We do not yet assumeindiscernability.

As shownin Ref. [3], this picturecanbe displayedexplicitly andwith comple-

te mathematicalrigor in thecaseof freeparticles,whereit turns out to be equiva-

lent to the conventionaltreatmentby Q.F.T. exceptnaturally that the selection

of positive energy statesis not automaticallyimplied by theeigenvalueequations

unless suitable restriction is made, from the outset, about the big spacein

which thewhole descriptionis imbedded.
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The first true problem is to modify the hamiltoniangeratorsof the free case
in orderto obtain a non trivial model.

Especially, the conservationof the numberof particlesshould be brokenin

a way which respectsPoincaréinvariance.

This requirementstrongly suggeststhat the basic ingredientsfor this modifi-
cation are annihilation/creationoperatorsassociatedwith a suitable invariant

(but off-shell!) one-particlestate.
Indeedthey changethe numberof particlesandwe control their transforma-

tion proportiesunderthePoincarégroup(covanance).

Going further in this directionleadsto definean off-shell free field operator
which is not to be used in any Lagrangianformalism,but shouldserveas a stone

in the constructionof additional termsin our scheme[6].
But, in orderto avoid unnecessarytechnicalcomplications,in the presentwork

particleswill be treatedas distinguishable.

Thus, instead of consideringcreation/annihilation,or generalizedfree field
[7] operators,we shall deal with contraction and tensorial-product operators

[8], which are less popular but geometricallyequivalent and,in the absenceof
symetrization,moreeasyto manipulate.

With the help of thesetools we aim at producinga model which mustbe non
trivial but as simpleand tractableas possible.In otherwords,we look for a proto-
type which could throw light on the theorybeforewe resumea moreaccurate

description.
Among a lot of various simplificationswe neglectspin and consideronly the

caseof massiveparticles.

This paperis reorganizedas follows:

Section2 countains mathematical preliminaries and a surveyof the conventions

we use.
Section 3 is devoted to the main lines of our secondquantizationscheme.
In section 4 a tentative model is sketchedand its difficulties are analyzed.
Section 5 displays a general method which alteratesthe original formalism

andreplacesthe divergencesby meaningfulexpressions.

In section6 we indicatehow to solvethe mass-shellconditionswhich characte-
rize thespaceof physicalstates.

2. NOTATIONS,CONVENTIONS

Space-time signatureis + — — —.
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We takec = h = 1.
Greek labels a, !3 = 0, 1, 2,3 are ommitted wheneverpossible, the scalar

productof four-vectorsbeing denotedby a dot, Q x = £0x°,etc. No summation

over particle indices,unlessexplicitly specified.For eachintegervalue of n we
introducetheindices

a~=l,
2 n.

Let ana be the differentiation operator a/ax~°= when it is necessaryto
specify that it acts in the n-particle space.Ommitting the dummy Greeklabel

wewrite
O =a •a

n,a~ n,a,~ n,a~

For instance021 is the dalembertianoperatorrelative to the variablex
1 in the

spaceof two -boby wave functions.

L
2(1R4) is the spaceof squareintegrablefunctionson space-time.

Theintegralswe write are understoodfrom — on to + on•

Thestatevectorswe considerare of the form

(2.1) = (~,.. . , ~(x
1, x2... x~),...).

Various spaces are defined by imposing condizions on the ~p,7.It might be

convenientto imbed them in a <<big space>>E which countainsall the vectors
we need.We may define this big spaceby demandingthat every ~ is a tempered

distribution in all its arguments.

Thus, in contrast to more conventionalhabits, a state like ‘1 in equ. (2.1)

is generallyneitheron the massshellnor in theHilbert spaceH = ~ L 2(~4n)

However referenceto H is preciousas giving a reliabledomainof validity for
somestatements.

The scalarproductin L
2(1R4) is noted(p, ill) and the samenotationis extended

to the scalarproduct (1, ‘I’) in H without risk of confusion.This notationmay
be usedalso when ‘1 is a regular stateand ‘I’ a generalizedstate in the senseof
riggedHilbert spacetheory [5].

The particle numberoperatorN and Poincarétransformationsare defined in

E by the usual formulas

(2.2) Nc1=(0,p ,n~c,, )

(2.3) AcI=(p
0,A~,..., ~ )

and for instance

(2.4) ~ = (0, 3~p1,(~+ ~ ‘~2
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The no-particlestate(1,0,0,.. .) is consideredas thevacuumfor free particles

(mathematicalvacuum).It is Poincaréinvariant and annihilated by P~,but not
theonly one in E to share theseproperties.

Of fundamentalimportanceare the contractionoperatorC[~p] and the tensorial
product operatorT[p]. We only shall considerthe casewhere ~ is the constant
function ~(x) 1 and set C[ 1] = C, T[ 1] = TDefinition formulasare the follow-

ing:

Let ~ be the n-particle space.C is first definedas a map: ~ ~ by

(2.5) C~n=f~n(Y~Xi~.. . ,x~)d~y.

ThenC is extendedto E (Using the samenotationwithout risk of confusion)

(2.6) C~=(C ,o~,C~p2 ~

T is first a map —~~ + 1)

(2.7) Tp~=~~~(x2,x3.. .

(2.8) Tp0= as a constant function of x.

ThenT is extendedtoE

(2.9) Ti? = (0, Tp0, Tp1. . . Tp~1..

While T is always defined, the domain of C mustbe characterizedby the require-
ment that the integral (2.5) convergesin some well-definedsense,which amounts

to restrict the n-particle spaceby a condition p~~ = ~T~° where ~ is a

suitable space in which fp(x) d
4x always converges.In view of our purpose,

and for the sake of simplicity, let us assumethat .9 is the spaceof functions

which are globally integrablefrom — on to + on, in a large enoughsense[9].

Note also that for Q �r 0 the planewavesare in .9, accordingto

(2.10) eitxd4x = 0.

In contrast,the constantfunction p(x) 1 is not in .~, andthereforeT, as defin-
ed in (2.7)alwaysleadsout of,9~’~+ 1)

~ (n)
Call ~ (symbolically) the subspaceof E resulting from the assignment

that ~ We seethat T, definedas in (2.9) always leadsout of
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For simplicity again, we shall not displaythe separationof positiveandnegati-

ve energies.Still, let us point out that it would be possibleto restrictE by deman-
ding that the Fourier transformedof each hassupport limited by the future

light cone,with respectto eachoneof its arguments.Thisdefining E~.
Using CII] and T[l] as we do would be compatiblewith sucha procedure,

as the Fourier transformed of ~(x) I is concentratedon the vertex, which
belongsto bothpartsof the light cone.

3. SECONDQUANTIZATION

A. Free Particles

The infinitely-many-hamiltonian formulation applies trivially to free particles.

In this case,the conventionaldescriptionrequiresthat the statevectorsatisfies
thecondition

(3.1) ~ + in
2) ~i~(xI’~’ x~)= 0

fora~ = 1,2 n.
By a slight abuse of languageall the stateswhich fulfill (3.1) are usually said

to be on the mass shell, though their component ~ is not in generalsolution

of an equationlike (3.1). In particularthe vacuumdoesnot correspondto a fixed
valueof in.

We shall respectthe traditional denomination,but it is usefulto introducethe

concept of exclusive mass shell characterized by the additional assumptionof
no componenton the vacuum,that is

(3.2) t,1i
0=0.

Now the massshell spaceKm is the direct sumof the exclusivemass-shellspace

K~Xwith the one-dimensionalno-particlespace.

Let usintroducethe hamiltoniangeneratorsby the formula

(3.3) hna ‘I~= 0,...~0~__LIa p,1,
0...

2

and thesquared-massoperatorsby

(3.4) Maa ~ =(o~_—0...,—— Da~n~

which means the linear rearrangement

(3.5) Maia
2~•. = h1 + h202 +. hna +.. .
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It is clearthat thegenralizedeigengalueequations

(3.6) Ma a a = — m
2’J!

123 2

are equivalent with ‘I’ E K~X.Reconstruction of the total spaceKm is achieved

by dirict sumwith the vacuumspace(with is a null eigenspaceof theM-operators.
Thus, for m ~�z 0 the bare vacuum space is actually orthogonalto K~).Note
that the needto distinguishthe Ii from the M is a genuinefeatureof the second
quantization in its most general many-time formalism. This technical detail

corresponds to the postulate [10] that the evolution operator has the form

(3.7) U = U
1(U2 1 U2 2)(U3 1 U32 U3, 3)

with

(3.8) U,~ = expi Tnahna~

(No summation).
All the h-operatorscommute among themselvesand thereis no problem of

mathematicalrigor in (3.5) or (3.7). The constantsof the motion being the
operatorswhich commutewith the hamiltoniangenerators,the conservationof
linear or angularmomentumis derivedwithout invoking the lagrangiancanonical

formalism.

B. Interacting Particles

We postulatethat interacting particlesare describedby suitable hamiltonian
generatorswhich are no longer given by (3.3). We retain the rearrangement

formula (3.5) but (3.3) and (3.4) are modified in order to take the interaction

into account.
The new operatorshna must keep along with the following requirements

a) Commutationamongtemselves

[hna~ hpa] = 0.

b) They remainfunctionallyindependent.

c) Commutationwith the generatorsof Poincaréalgebra.

d) Hermiticity.

The evolutionoperatorremainsformally definedby (3.7).
Note that (a) legitimatesa lot of formal calculationsdealingwith U in scatter-

ing theory. Moreover(a) is the logical generalizationof thepredictivity conditions

weknow in N-boby dynamics[11].
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The interacting exclusivemass shell is characterizedby eq. (3.6) where now
Maa are the modified squared-massoperators.It is worthwile noticing that

(a) and (3.5) imply that the M operatorsare constantsof the motion,and the
equations(3.6) form a compatiblesystem.

After selectionof the exclusivemass-shellspaceit will berelevantto consider

eventually the extensionof it by a suitable physical vacuumwhich might be

distinct from the bareno-particalstate[121.
This point will be discussedlater, in the contextof morespecific assumptions.
The problemis to satisfy the requirementsa) b) c) d) in a nontrivial way. The

less we candemandis that

~
11~n,a,~’N] not all vanish in order to ensurethat N is no longer a constant

of themotion.

II) The new hamiltoniangeneratorsdo not all commute with the free ones,

in order to have

[U, Ufreel~ 0~

Otherwize the scatteringpropertiesare trivial.

Haag’s theorem[13] is not a priori an objection,since our approachis not

foundedon the canonicallagrangianformalism and the usual hamiltoniandensity

is not employed. However, the consistencyof (I - II) with (c) requiresspecial
careand is postponedto the nextsection.

Let us indicate a straightforward method for constructingoperatorswhich
satisfy all the above requirementsexceptperhaps(c). From now on, quantities

labelledwith a bar refer to the free particle system.For exampleU = Ufree etc..

Let B be aninvertible operatorwhich satisfies

(I’) [B,N]z�rO

(II’) [B, ]7] not all vanish,thus [B, U] z�r 0.

It is clear that setting

(3.9) hue = B hnaB~~

automaticallywe fulfill (a) (h).
The squaredmassoperatorsare given by

(3.10) M =BMaa B-’

and we havealso U = BUB~andeq.(3.5) (3.7) (3.8) hold without matheniatical
difficulties. —

The exclusive mass shell ~ is in one-to-one correspondance with Kr’, and
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its elementsgiven by

(3.11)

which solves(3.6) if dl) EK~’

The completemassshell spaceis obtainedby addition of thephysicalvacuum

which we assumeto be of the form

(3.12)

where I~is the no-free-particle state (1,0, . . . ). Note that ~ necessarily a

zero-massstate.
Thus finally (3.11) definesall the interactingstates,if dl) is an arbitrary free-

-particlestateon the massshell (vacuumincluded).When,moreover,B is unitary,

then (d) also is satisfiedandU is unitary like U.
Such a model is still spectrally trivial in this sensethat the eigenstatesof M

are in one-to-onecorrespondancewith thoseof M.

Neverthelessthe particle number is not constantand the scatteringproblem
is far from trivial, because[U, U] doesnot vanish.

The crucial questionis whetherB can be chosenin sucha waythat condition
(c) also is satisfied.It would be sufficient that B commuteswith the generators

of the Poincaréalgebra.If so, we could derive the conservationof linear and
angularmomenta,and cl)

0 would bean invariantno-momentumstate.

4. THE NAIVE MODEL

In order to haveB unitary it is naturalto choose

(4.1) B=expikA

wherek is a coupling constantandA hermitian.

One is left with the problem of finding A which does not commutewith
N andsuchthat [A, line] not all vanish.

From a generalview point it is naturalto attempt the constructionof A from

an invariant combination (including derivatives and integrations) of covariant

generalizedfree fields which act off shell [6] [7].
Still we way fear that no suchinvariantA exists at all. It seemsthat a simple

solution is

(4.2) A=C+T

with C and Tdefinedin eqs.(2.6) ana(2.9)respectively.IndeedC andTcommu-
te with Poincarëtransformationsand breakthe conservationof N (For instance
computing(C + 7) cl)0 we obtain a one-particlestate).ThatA doesnot commute
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with all the Ii is easy to check.Computefor instancethe actionof [C + T,h3 2~

on a 2-body state(0, 0, p2(x,x2),0 . . .). The only non vanishingcontribution
comesfrom /13 2 T.

Recalling that C = C[ I] and 1’ = T[ 11 one expectsthat C = T + and therefore

A is hermitian [14]. The truth is a little bit more subtle, all we can provebeing

(4.3) (c17,C’I’)=(Tcl),’I’)

where ‘4’ is restrictedby the condition that are test functions (in Schwartz
space).In fact T’l) cannot be normalized(for 4 ~ 0) and (4.3) makessensein a

rigged Hilbert space.
The most naive treatment would ignore mathematicaldifficulties in a first

order perturbationexpansionaccordingto the formulas

(4.4) B=l+ikA

(4.5) cl)=cb+ikAcl)

and,omitting variousparticleindices

(4.6) h=h+ik[A,h]

(4.7) M=M+ik[A,M].

Explicit computation of (4.5) is very easy when dl) is an n-bodyplane wave.

Forinstancewhenn = 1 one finds

(4.8) cl) = (0, e~’,i k ~ 0...).

The vacuumof interactingparticlesis at first order

(4.9) = (1, i k, 0,. . . ).

Unfortunately anyeffort to go beyondthe first order is plaguedby divergen-
ces. The origin of this trouble is that the constantfunction ~(x) = I is not in
L

2(1R4)which implies that T[ 1] is not an operatorin H.

Actually T always leads out of the domain where C is defined,hence the
productCTdivergeslike the volume of space-time.

Finally A2 and the higherpowersof A diverge.It is clearthat this drawbackis the
pricepaidfor theuseof theconstantfunction whichguaranteesPoincaréinvariance.
Of courseCandTcanberegularizedif weacceptto replacep(x) = I by a squareinte-
grablefunctionwhich is constantin afinite regiononly. Thiswell-known procedure
would breakPoincaréinvarianceby the introductionof a box in space-time[15].

We prefer an alternative method which preservesinvariancebut requiresan
extension of the formalism.
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5. ALTERATION OF THE FORMALISM

We are going to redefine divergentquantitiesas elementsof a commutative

algebra A of c-numbersin which complex numberscan be imbedded.At the
same time, the space of state vectorswill be enlargedas to become a module

on A (i.e. linear combinationsby elementsof A will be permitted)which im-
plies, of course,that it remains a vectorspaceon the field of complex numbers,

C.

The underlayingidea is that we should replacethe initial Hilbert spaceby a

similar constructionof a bigger vector spaceendowedwith a hermitian form
which takesits values in A. Indeed such a structurewould presentalmostno

formal difference from the traditional one,with the advantageof a tremendous
mathematicalflexibility.

Howeverwe shall not give herea systematicdevelopmentof this point of view

which deservesa separatestudy [16].
Rather,we are going to introduceas simply as possibletherequiredmodifica-

tions. Not departingfrom the Fock formalism, we still postulatethat the state

vectorsare

(5.1) ~ ~p,1,...)

but the natureof the various is alteredby assumingadditional dependence
on an extravariable ~. This real and scalarvariableis by no meansa new degree
of freedom.On the contraryit mustbe understoodas meremathematicalpara-
meter,theroleof which is to insureconsistentcalculations.

Thegenericterm of the sequencecl) is thusof the form

x,~,~).

Let us be more specific by requiring that the dependenceon ~is holomorphic.
As the holomorphicfunctionsin ~ (with complexcoefficients)form (algebrically

speaking)a field 1k, we canconsider~ not only asa map: x IR -* C butalso
as a map: lR’~—~ A, that is an A-valued function of x1, x,~.With this later

point of view, the n-body wave function ~p,1still canbeconsideredasan element
of the ~th tensorial power of the one-particlespace.Naturally, linear combina-
tions involve coefficientswhich arearbitraryholomorphicfunctionsin ~.

We suggestto call alteration the aboveprocedurewhich consistsin the intro-

ductionof the E dependence.
If F is a certain spaceof functions, we shall noteF# the spaceobtainedby

addingthe holomorphicdependenceon ~.

From now on dependenceon ~ will be implicitly understoodas holomorphic.

In order to define precisely the new spaceof states,let us begin with the
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one-particlespace.
If L is thespacemadeof functionsof the form

(5.2)

with X = const.andL~fd
4x converges[9], we call L# thespaceof the functions

(5.3) ~(x, ~) =f(x, ~) + X(E)

where ff(x, ~) d’1x converges,and A dependon

On L we may define with obvious notationsan A-valued sesquilinearmap

(5.4) (~, ~) ff* g d4x + ~ff*d4x + x*fg d4x + X*p~.

(Note that (5.4) can also be consideredas defining on L an infinite sequenceof
matricesparametrizedby ~. This point of view will be invoked in our conclusion).
In the spirit of a recent work [16] this formula can be extendedto L# which

becomesanIA-vectorspacewith hermitianform.

Let L#®n be the nth tensorialpower of L# consideredas a spaceof 1k-valued
functions in the variable x. For instanceL# ® L~is made of functions of the

form

(5.5) p
2 = f(x1, x2, ~)+ g(x1,~) + h (x2, ~) + ~(E)

where f is integrablefrom — on to + on with respectto both x1 andx2~g and h

are integrablewith respectto respectivelyx1 andx2.

Naturally we maketheconventionthat theL#®(O) = 1k.

TakingL#®~~as n-particlespace,we constructthe newspaceof states,say F#.
As anouncedpreviously,F# is a vectorspaceon C, and alsoon A. It is equip-

ped with a (1k-valued) hermitian form, thus hermiticity and unitarity have a

precisemeaningwhenspeakingof operatorsin N.

Extensionof thePoincarégroup to alteredstates.
dl) = (. . , ~,1(x1,x2 . . . x,~,~) , . . . ) is straightforward: the usual formulas

apply,thescalarvariable~beingignorable.Thesameremarkholdsfor the particle
numberoperatorand the free hamiltoniangenerators.

Now we cometo the main pointof this section:
C can be replacedby a new operator C# which is definedby similar formulas

but is well-definedin r~#.
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In this spirit, C# will be first definedas a map:

-÷ L#®~~~

and then extendedto N. Let us startwith the oneparticle space,and p as in

(5.3). We define

(5.6) C~ ffx~~) d~x+ ~

To each~ in L# we associateby C# an elelnentof 1k. WhenA 0 we recover

thedefinitionof C. Note that if f and A are independentof ~ then p is in L, but
C# does not map L into C. Thereforethe introduction of altered states(i.e.
statesdependingon E) cannot be avoided.Note that an illegal applicationof C
to a non-trivial elementof L (i.e. A = const.~ 0) would haveproduceda formula
like eq. (5 - 6) with a singularity in placeof ~ in thesecondterm.

If A is a space-timedisplacement,it is obviousthat

(5.7) C~(A x, ~)= C#p.

We extendedC# to any n-particlestateby

(5.8) C~1~. .. ~i~) = C~1(v~2~...

Forexamplewe haveexplicitly in L# ® L# the formula

(5.9) C~2=f f(y,x1,~) d~y+f~(Y~~)d
4y + ~h(x

1, ~) + ~).

Obviously C#p2 belongs to L#. Finally C# is everywheredefinedin f’# by the

formula

(5.10) C~l) = (C~1,C~2,... ~ a,...).

Of courseC~~l)coincideswith Cl) in the particularcasewhere‘F E H.

Remark. C#’F doesnot map into itself the space I’ definedby requiring that
E L®n. The intervention of altered states is thereforeessential.From (5.7)

(5.8) (5.10) we seethat C# commuteswith the transformationsof the Poincaré

group.

Unlike C, the tensorial product operatorT can be extendedto F~without
modification.
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Indeed the formulas can be used also when the functions ~additionally

dependon E.
Note that C# and Tare conjugatewith respectto the hermitian form of F#.
Finally we canreplaceC + T by thelinear operator

(5.11) A=C#+T

which is everywheredefined in N. The various powersof A are well-defined,
andsois C#T.

Since the action of A coincideswith that of C + T is some particularcases,

checksmadewith C + T are sufficient to insure[A ,N] z/r 0 and [A, hna ] not all
vanish.

Therefore non-trivial interacting hamiltoniansh~~ are defined by eq. (3.9)

when

(5.12) B=expikA

k being a coupling constant.For the moment eq. (5.12) definesB andB’ as

formal series in k, at least. In contrastwith the situation which would have
resultedfrom eq.(4.2), eachterm of theseriesis now well-defined.

We guess that a more elaboratedtheory of linear operators in F~would

improve our definition of B.

Similarly, the squaredmassoperatorsare definedby (3.10).
Notethat in (5.11)A satisfiesall thedesiredrequirements.

The invertibility of B is sufficient to insure a one-to-onecorrespondance

betweenthe free massshell and the interactingmass shell, for eachvalueof the

mass.HenceM has a continuousspectrum of generalizedeigenvalues which
arenot only real, but positive.

6. STATES ON THE MASS SHELL

The model is now defined by equations(3.9) -(3.12) where B is the series
(5.1 1). Computationof (3.1 1) can be carriedout at any order in the coupling
constant.

As it involves repeatedapplicationsof C# and T, the result can be written
explicitly up to a certainnumberof integrationsover space-time,for an arbitra-
ry ‘F on thefree massshell.

The following remark is important: We have enlargedthe initial formalism

as to incorporatesystematicallyaltered states.In particular the spaceK of the
stateswhich are on the free massshellhasbeenenlargedtoo.
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For example the one-particle state

(0,~e’~,0. .

with 12 = m2, is an alteredsolution of (3.6). Its physical interpretationis not
obviousin spite of the possiblility that it representsan ultraidealizedsituation.

If any collision theory is possibleat all, the questionariseswether it may

happenthat ‘Fout be s-dependentwhen ‘F,~is not.
In the absenceof any argumentfor discarding this possibility we face the

problemof interpretingalso alteredstates.
In other words, numerical information (in the conventionalsense)should

be extractedfrom alteredamplitudes.
In the presentformalism, the quantitiesusually required to have a direct

physical meaning (expectation values, transition probabilities, etc.) may be
~~ (except if a fortunate cancellation mechanismoccurs, which is
by no meanscertain).

The limit of thesequantities for ~ -+ + on will be consideredas the relevant
numerical answer, in agreementwith the heuristic intuition that ~ replacesa

divergence.

Let us point out that the calculationof ‘F can be explicitly carriedout when
‘F is an n-body plane wave. Indeed, recalling C# 1 = ~ (C# as a map L -~ A)
and formula (2.10),we seethat repeatedapplicationsof C# and T give a result
in closedform (at any orderin k).

Computationof the physical vacuum is elementary,with the help of the
useful formula

(6.1) C#T
0=~T~~~4u0.

Onefinds for instance

(6.2) A’F0=T’F0

(6.3) A
2’F

0=~’F0+T
2cl)

0.

Thus,at thesecondorder

k
2 — k2

(6.4) ‘F~= 1—— ~ ‘F
0+ikT’F —— T

2’F
2 0 2

whereT” ~ is the n-body state (. . . , 0, 1, 0, . .

It was obvious from the very beginning that physical statesare generally

not normalizable in the senseof the inner product (‘F, ‘4’) in H, which is a mathe-
matical structure without direct physical interpretation [17].

Nevertheless,the free-mass-shellspaceKis equippedwith a hilbertianstructure
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of its own { ‘F, ‘I’), (the physical scalar product resulting from propertiesof the
solutionsof theKlein-Gordonequation).

Now the physical space which results from taking ~ unaltered in eq. (3.11)

canbe given a similar structure, just by imposing the definition

~‘F,‘F} =

More generally if we wish to incorporate altered states we shall considere an
LA-vector spacewith a hermitian form (‘F, ‘P}.

7. CONCLUSION AND OUTLOOK

We have succeded in the perturbative construction of the statevectors which
representinteractingparticles. Expressionsin closed from will be availabe if the
operator B = exp i k (C# + 7’) is given a meaningother thanperturbative,which
leads to investigate the topology of spaces endowed with a hermitian form
without being Hilbert spaces.

In view of a simple and comprehensive presentation we have reserved this
question for subsequentpapers.

Another simplification was taking L as one-particle space,insteadof the space
of tempereddistributions. (L is somehowthe minimal space we can afford). But
a more generalassumptionwould havedrastically complicatedthe procedureof
alteration.

Furthermorewe haveassumedthat the particlesare distinguishableandscalar.
Thesepropertiesdo not seemto be essentialandcould be relaxed.

At least one can seek for a model invariant under particle permutations.
Besides,futurework will pay moreattention to the separationof positiveenergy

states.
We do not claim that the alterationproceduredevelopedhereis a renormaliza-

tion method in the full sense.
Indeedwe havebeensubstantiallyhelpedby the factthat the only divergences

in the tentativemodel of section4. all arise from the infinite volume of space-

-time. This is more comfortablethan the genericsituationone usuallymeetsin
realisticQ.F.T.

But some analogy exists with the so-called (‘F~)2theory,which hasno ultra

violet divergences.
Our altered formalism can be comparedwith the method utilized therein:

Insteadof a cut-off labelled by a discreteparameter,we havein fact introduced
a (continuous)infinite sequenceof metrics,parametrizedby ~,andalso a sequen-
ce of systemswith an interaction which is Poincard invariant for eachvalue

of ~.
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In our schemeP0 is relieved from the task of generatingthe dynamics(this
role being assignedto the h), which brings out a great flexibility. A question
remains:Is it possibleto find an invariant model satisfyingconditions(a) (b) (c)
(d) (I, II) of Section 3 without alteration, but not necessarilyin the special

form of (3.9) (3.10)?
We havea seriousdoubut and the mostconstructiveattitude,in the stateof

our knowledge, is to improve the method of alteration, in view of further

constructions.
There remainsa lot of work to carry out. Indeed,constructingthe spaceof

statesis only the first step in the quantizationof a system.

The secondstep (and not the least) is the studyof scatteringproperties.All
we have done so far is to pose thisproblem.The complicationinvolved by the

use of an infinitely-many-time formalism may seemhopeless.But it may be
noticed that our evolution operator, which dependson a countable infinity of

proper-timesis lesscomplicatedthanthe oneof theTomonaga-Schwingerforma-
lism, which islabelledby a spacelikesurface.

Here, like in the caseof Q.F.T.,one knows that the tremendousredundance
of the formalism (price paid for a top level of generality) canhidea simpler and

more intuitive one-parameterpicture which is less beautifulbut moreefficient
in practice.

Another way to look at this questioncanbe the searchfor modelsin which

the number of particles is variable but cannot exceeda fixed bound [4]. For

such truncated interactions the many-time formalism will be tractable,and
S-matrix calculationspossible.

Anyway, promising results obtained in the 2-body [18] and n-body [19]
sectorsshow that a reasonablescatteringtheory may be foundedon a picture

which involvesmanyevolutionparameters.
Returning to the model presentedhere, let us stressthat if S exists, it has

obviously no reasonto be theidentity.

It will be exciting to make some contact with usual Q.F.T. The difficulty

stemsfrom this peculiarity of field theory that its operatorformulation is a

priori restrictedto the free-mass-shellspace.
Before attackingthis problem, it will be useful to constructandstudy simpli-

fied exampleof this situation.
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